Quasi-Interpolatory Refinable Functions and Contruction of Biorthogonal Wavelet Systems
نویسندگان
چکیده
We present a new family of compactly supported and symmetric biorthogonal wavelet systems. Each refinement mask in this family has tension parameter ω. When ω = 0, it becomes the minimal length biorthogonal Coifman wavelet system [22]. Choosing ω away from zero, we can get better smoothness of the refinable functions at the expense of slightly larger support. Though the construction of the new birothogonal wavelet systems, in fact, starts from a new class of quasi-interpolatory subdivision schemes, we find that the refinement masks accidently coincide with the ones by Cohen, Daubechies and Feauveau [3, §6.C] (or [8, §8.3.5]), which are designed for the purpose of generating biorthogonal wavelets close to orthonormal cases. However, the corresponding mathematical analysis is yet to be provided. In this study, we highlight the connection between the quasi-interpolatory subdivision schemes and the masks by Cohen, Daubechies and Feauveau, and then we study the fundamental properties of the new biorthogonal wavelet systems such as regularity, stability, linear independence, vanishing moments and accuracy.
منابع مشابه
Quasi-interpolatory refinable functions and construction of biorthogonal wavelet systems
We present a new family of compactly supported and symmetric biorthogonal wavelet systems. Each refinement mask in this family has tension parameter ω. When ω = 0, it becomes the minimal length biorthogonal Coifman wavelet system [17]. Choosing ω away from zero, we can get better smoothness of the refinable functions at the expense of slightly larger support. Though the construction of the new ...
متن کاملConstruction of biorthogonal wavelets from pseudo-splines
Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight fra...
متن کاملQuincunx fundamental refinable functions and quincunx biorthogonal wavelets
We analyze the approximation and smoothness properties of quincunx fundamental refinable functions. In particular, we provide a general way for the construction of quincunx interpolatory refinement masks associated with the quincunx lattice in R2. Their corresponding quincunx fundamental refinable functions attain the optimal approximation order and smoothness order. In addition, these examples...
متن کاملCompactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions
This paper provides several constructions of compactly supported wavelets generated by interpolatory reenable functions. It was shown in D1] that there is no real compactly supported orthonormal symmetric dyadic reenable function, except the trivial case; and also shown in L] and GM] that there is no compactly supported interpolatory orthonormal dyadic reenable function. Hence, for the dyadic d...
متن کاملAnalysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support
In applications, it is well known that high smoothness, small support and high vanishing moments are the three most important properties of a biorthogonal wavelet. In this paper, we shall investigate the mutual relations among these three properties. A characterization of Lp (1 ≤ p ≤ ∞) smoothness of multivariate refinable functions is presented. It is well known that there is a close relation ...
متن کامل